Memorial Descritivo de Instalações Hidrossanitárias

Centro Municipal De Educação Infantil São José

Prefeitura Municipal De Sorriso

INSTALAÇÕES HIDROSSANITÁRIAS

INFO	ORMAÇÕES GERAIS	3
CON	ISIDERAÇÕES INICIAIS	3
CRI	ΓÉRIO DE SIMILARIDADE	3
	ERPRETAÇÃO DE DOCUMENTOS FORNECIDOS DOCUMENTOS DA OBRA	
INST	ΓALAÇÕES HIDROSSANITÁRIAS	
•	NBR 05626/1998 - Instalação predial de água fria.	4
1.3.	CRITÉRIO DE DIMENSIONAMENTO DA TUBULAÇÃO	6
2.	SISTEMA DE DRENAGEM PLUVIAL	
4.2.	VERIFICAÇÃO DE PRESSÃO	9
4.3.	SISTEMA DE DRENAGEM PLUVIAL – DIMENSIONAMENTO DO	
PRO	DJETO	
4.4.	Capacidade da Calha Adotada	12
3.3.	SISTEMA DE TRATAMENTO/DISPOSIÇÃO DE ESGOTO –	
	IENSIONAMENTO DO PROJETO	. 13
	mensionamento do sistema de tratamento/disposição final de esgoto foi elaborado	
utiliz 3.3.1	zando os mesmos valores de per capita utilizados no dimensionamento do reservatório	
	1	
	álculo do volume produzido	
Utili	zou-se da seguinte equação:	. 13
	1000 + N (C x T + K x Lf)	
V = 1	1000 + 131 (50 x 0,67 + 65 x 0,20) - 7091,50 1	
3.3.2	. Filtro Anaeróbio	14
Ca	álculo do volume produzido	14
Utiliz	zou-se da seguinte equação:	14
3.3.3		
	álculo da área de infiltração	
Utiliz	zou-se a seguinte equação:	15
De	efinição da Altura	15
Ut	tiliza-se a seguinte equação:	15
	imensões do sumidouro	
4.	ESPECIFICAÇÕES	
4.1. 4.2.	Água friaColeta e disposição de esgoto sanitário	
4.2. 4.3.	Drenagem de águas pluviais	
4.s. 5.	EXECUÇÃO DOS SERVIÇOS	
	TAS E OBSERVAÇÕES	, . 18
	T = =	

 Este memorial complementa o projeto executivo e deve ser respeitado pelo executor da obra em todos os seus aspectos. LORRANE JATOBÁ

ARQUITETURA

INFORMAÇÕES GERAIS

Pretendente/Consumidor: Prefeitura Municipal de Sorriso.

Obra: CEMEIS São José.

Localidade: Rua Santa Anastácia esq. Com Rua São Marcos – S/N - Sorriso -

MT

Data: 20 de fevereiro de 2022;

Descrição do Projeto: O presente memorial descritivo tem por objetivo fixar normas

específicas para a execução do Projeto Hidrossanitário da obra de

Construção da Creche.

CONSIDERAÇÕES INICIAIS

O presente memorial descritivo de procedimentos estabelece as condições técnicas mínimas a serem obedecidas na execução das obras e serviços acima citados, fixando, portanto, os parâmetros mínimos a serem atendidos para materiais, serviços e equipamentos, seguindo as normas técnicas da **ABNT** e constituirão parte integrante dos contratos de obras e serviços. A planilha orçamentária descreve os quantitativos, como também valores em consonância com os projetos básicos fornecidos.

CRITÉRIO DE SIMILARIDADE

Todos os materiais a serem empregados na execução dos serviços deverão ser comprovadamente de boa qualidade e satisfazer rigorosamente as especificações a seguir. Todos os serviços serão executados em completa obediência aos princípios de boa técnica, devendo, ainda, satisfazer rigorosamente às Normas Brasileiras.

INTERPRETAÇÃO DE DOCUMENTOS FORNECIDOS DOCUMENTOS DA OBRA

No caso de divergências de interpretação entre documentos fornecidos, será obedecida a seguinte ordem de prioridade:

- Em caso de divergências entre esta especificação, a planilha orçamentária e os desenhos/projetos fornecidos, consulte à profissional responsável;
- Em caso de divergência entre os projetos de datas diferentes, prevalecerão sempre os mais recentes;

As cotas dos desenhos prevalecem sobre o desenho (escala);

INSTALAÇÕES HIDROSSANITÁRIAS

As Instalações Hidrossanitárias serão executadas de acordo com as seguintes normas técnicas:

- NBR 05626/1998 Instalação predial de água fria.
- NBR 08160/1999 Sistemas prediais de esgoto sanitário Projeto e execução.
- NBR 10844/1989 Instalações prediais de águas pluviais;
- NBR7229/83 Projeto, construção e operação de sistemas de tanques sépticos.
- NBR 13969/97 Tanques sépticos Unidades de tratamento complementar e disposição final dos efluentes líquidos

Adotando todos os critérios impostos pelas mesmas para a correta execução do Projeto de Instalações Hidrossanitárias.

1. SISTEMA DE ÁGUA FRIA

A edificação a ser construída será alimentada por um reservatório em aço do tipo taça com coluna seca (Altura da Coluna: 6,00 m) com capacidade para 20.000 litros, sendo que este é alimentado através da rede municipal de abastecimento conforme o projeto em anexo (Através de um Sistema de Recalque e Sucção – Reservatório do Tipo Tanque - V:5.000 l).

O mesmo reservatório utilizado para a demanda de consumo das edificações será utilizado para alimentar o sistema de combate a incêndio/sinistros (8.000 L), portanto os ramais de consumo devem ser instalados de forma a não comprometer a reserva destinada ao combate de incêndio/sinistros.

Todas as saídas de tubulações dos reservatórios serão executadas utilizando-se de adaptadores com flanges apropriados.

1.1. REDE DE DISTRIBUIÇÃO

A rede de distribuição de água potável será executada, com tubos e conexões de PVC soldável, ponta e bolsa, classe 15.

LORRANE JATOBÁ

ARQUITETURA

Em nenhuma hipótese será permitido o aquecimento desta tubulação, para se evitar a reutilização de tubos quando da abertura de bolsas. Serão empregadas sempre luvas duplas do mesmo material.

Deve ser evitada a utilização de materiais de fabricantes diferentes.

Os pontos de utilização devem possuir um recuo de cinco milímetros a contar da superfície externa e acabada da parede, ou azulejo, para se evitar o uso de acessórios desnecessários.

A distribuição de água fria será realizada embutida nas alvenarias da edificação (Tubulações com DN 50 mm no máximo). Para diâmetros maiores será previsto enchimento para subida de tubulação.

O ramal de alimentação foi locado de forma com que não prejudique a estrutura do edifício.

Os ramais obedecerão às vistas específicas de cada detalhe de água, no que diz respeito ao encaminhamento, altura e bitola dos tubos. Os projetos estão apresentados em planta e detalhamento de tubulações e instalações físicas.

Dentro da construção, os tubos devem ser transportados do local de armazenamento até o local de aplicação, carregados por duas pessoas, evitando ser arrastados sobre a superfície o que causaria deformações e avarias nos mesmos.

Devem ser armazenados em lotes arrumados à sombra próxima ao local de utilização.

O corte nas tubulações deve ser feito perpendicularmente ao seu eixo longitudinal, as emendas devem ser lixadas, limpas com solução limpadora e aplicada cola PVC sem excessos.

O projeto foi concebido com todas as conexões previstas ao desenvolvimento das instalações, não sendo necessário, portanto, desvios ou ajustes nas tubulações, o que criaria esforços inadequados na utilização de tubos e conexões.

Devem ser previstas todas as passagens de tubulações antes da concretagem das estruturas constituintes do edifício de modo a facilitar a execução das instalações de água fria e esgotamento sanitário.

1.2. OBSERVAÇÕES

Nas soldagens, sendo o adesivo para tubos de PVC rígido basicamente um solvente com baixa percentagem de resina de PVC, inicia-se durante sua aplicação um processo de dissolução nas superfícies a serem soldadas.

A soldagem se dá pela fusão das duas superfícies dissolvidas. Quando comprimidas, formam uma massa comum na região da solda. Para que se obtenha uma solda perfeita, recomenda-se:

- Verificar se a bolsa da conexão e o tubo estão perfeitamente limpos;
- Com uma lixa N° 100 tirar o brilho das superfícies a serem soldadas, com o objetivo de melhorar a condição de ataque do adesivo;
- Limpar as superfícies lixadas com solução limpadora, eliminando as impurezas e gorduras que poderiam impedir a posterior ação do adesivo;
- Proceder à distribuição uniforme do adesivo nas superfícies tratadas.
 Aplicar o adesivo primeiro na bolsa e depois na ponta;
- O adesivo não deve ser aplicado em excesso, pois se tratando de um solvente, ele origina um processo de dissolução do material. O adesivo não se presta para preencher espaços ou fechar furos;
 - Encaixar as extremidades e remover os excessos de adesivo;
- Observar que o encaixe seja bastante justo (quase impraticável sem o adesivo), pois sem pressão não se estabelece a soldagem, aguarde o tempo de soldagem de 12 horas, no mínimo, para colocar a rede em carga (pressão).

Procure utilizar tubo e conexão da mesma marca, evitando os problemas de folga e dificuldades de encaixe entre os tubos e as conexões.

Todos os serviços a serem executados, deverão obedecer a melhor técnica vigente, enquadrando-se, rigorosamente dentro das especificações e normas da ABNT.

1.3. CRITÉRIO DE DIMENSIONAMENTO DA TUBULAÇÃO

Tendo em vista a conveniência, sob o aspecto econômico, a instalação de água fria foi dimensionada trecho a trecho, funcionando como condutos forçados.

Para cada trecho foram perfeitamente caracterizados para os 04 (quatro) parâmetros hidráulicos do escoamento: vazão, velocidade, perda de carga e pressão dinâmica atuante.

O dimensionamento das tubulações foi realizado com base, no método uso máximo provável, como indicado pela NBR-5626/98 (instalação predial de água fria) da ABNT, de modo a garantir pressões dinâmicas adequadas nos pontos mais desfavoráveis da rede de distribuição, evitando que os pontos críticos das colunas possam operar com pressões negativas em seu interior.

Todos os serviços a serem executados, deverão obedecer a melhor técnica vigente, enquadrando-se, rigorosamente dentro das especificações e normas da ABNT.

As perdas de cargas foram calculadas com base na fórmula *Universal* para tubos de PVC.

2. SISTEMA DE DRENAGEM PLUVIAL

O fluxo d'água das coberturas é direcionado para as áreas permeáveis do solo através de condutores verticais, em solo é prevista a utilização de drenos compostos por tubulações perfuradas e de caixas de inspeção com grelha conforme apresentado em projeto.

Em projeto são utilizados os seguintes itens:

- Calha em chapa de aço galvanizado número 24, com desenvolvimento de 50 cm;
- Rufo em chapa de aço galvanizado número 24, com desenvolvimento de 25 cm; (Inclusive as pingadeiras);
 - Ralo hemisférico em ferro fundido com DN 75/100 mm;
 - A tubulação e as conexões são em PVC branco Série
 - Tubulação Corrugada e Perfurada PVC
 - Abraçadeira Metálica para a fixação dos condutores verticais;

As águas pluviais não devem ser lançadas em redes de esgoto usadas apenas para águas residuárias (despejos, líquidos domésticos ou industriais).

A instalação predial de águas pluviais se destina exclusivamente ao recolhimento e condução das águas pluviais, não se admitindo quaisquer interligações com outras instalações prediais.

3. SISTEMA DE ESGOTAMENTO SANITÁRIO

O esgoto doméstico proveniente da edificação seguirá para rede de esgotos prediais com tubos de PVC com diâmetros indicados em projeto concentrando-se em uma caixa de inspeção e em seguida direcionados para sistema de tratamento de esgoto.

Em projeto foi proposta a utilização de um sistema de tratamento/disposição final de efluentes composto em sequência por 1 (um) tanque séptico, 1 (um) Filtro anaeróbio e 4 (quatro) Sumidouros.

3.1. DIMENSIONAMENTO DAS TUBULAÇÕES DE ESGOTO

No dimensionamento das instalações prediais de esgotos sanitários, primário e secundário, serão observadas as prescrições da norma brasileira NBR 8160 – Instalação Predial de Esgoto Sanitário, a NBR 7229/93 Projeto, construção, operação de sistemas de tanques sépticos. A princípio para qualquer dimensionamento dos diâmetros das tubulações de esgoto, deve-se adotar como unidade de contribuição a UHC – Unidade Hunter de Contribuição. Cada aparelho possui o seu número de UHC e o diâmetro mínimo do seu ramal de descarga.

A primeira fase do dimensionamento do projeto predial consiste em definir a localização e quantificar os aparelhos sanitários que serão utilizados na edificação. Ressaltando que todo o aparelho peça e dispositivos deverão satisfazer às exigências das normas pertinentes. Após a primeira fase, determinaram-se os diâmetros mínimos, dos ramais de descarga para posteriormente determinar os diâmetros mínimos, dos ramais de esgoto, tubulação de ventilação e os tubos de queda. A penúltima fase será a determinação dos diâmetros mínimos, dos coletores e subcoletores.

3.2. SISTEMA DE VENTILAÇÃO

Ao final das colunas de ventilação deverá ser instalado um **terminal de ventilação** a fim de impedir que entre água na coluna, vale ressaltar que por se tratar de uma tubulação de DN 50 mm ela sobe embutida na alvenaria e até acima do forro, onde é desviada através de Joelhos de 90 graus para o telhado para que não danifique a estrutura da viga.

A coluna de ventilação deve apresentar um prolongamento de 30 cm acima do telhado – vide detalhe apresentado em projeto.

4. MEMORIAL DE CÁLCULO

4.1. DIMENSIONAMENTO DO RESERVATÓRIO

Para a elaboração deste projeto foi considerado que a edificação atender a seguinte demanda:

- Alunos 50l/ dia x Pessoa Público de 116 Alunos x Dia;
- Funcionários 50l/dia x Funcionário 15 Funcionários x Dia;

Sendo assim o volume do reservatório é calculado a baixo;

V: População (nº de pessoas) x per capita (l/dia.pessoa)

V: (116 Alunos x 50l/dia por Pessoa) + (15 Funcionários x 50l/dia por Funcionário)

V: 6550 l x dia;

A edificação a ser construída será alimentada por um reservatório em aço do tipo taça com coluna seca (Altura da Coluna: 6,00 m) com capacidade para 20.000 litros, sendo que este é alimentado através da rede municipal de abastecimento conforme o projeto em anexo.

O mesmo reservatório utilizado para a demanda de consumo das edificações será utilizado para alimentar o sistema de combate a incêndio/sinistros (8.000 L), portanto os ramais de consumo devem ser instalados de forma a não comprometer a reserva destinada ao combate de incêndio/sinistros.

4.2. VERIFICAÇÃO DE PRESSÃO

A tabela a baixo apresenta os valores de pressão dinâmica mínima os quais devem ser atendidos em projeto.

Ponto de água	Pressão dinâmica mínima (kPa)	Pressão dinâmica mínima (mca)
Bacia sanitária com válvula de descarga	15,0	1,5
Bacia sanitária com caixa acoplada, ou de cordinha	5,0	0,5
Outros locais	10,0	1,0

Figura 1 - Pressão dinâmica mínima FONTE: ADAPTADO DE NBR 5626/1998

Sendo assim, será apresentada a pressão disponível no ponto mais desfavorável da edificação.

Considerando as seguintes condições:

- Velocidade máxima 2,5m/s.
- Pressão máxima no ponto de utilização 40 m.c.a.

Para o correto funcionamento das instalações de água fria os ramais de consumo devem ser instalados de forma a apresentarem uma altura geométrica mínima de 8,20 metros (Altura Calculada com o volume ocupado pela reserva das instalações de combate a incêndio).

4.2.1. Detalhe AF- 6

Conexão analisada:

- Vaso Sanitário (Infantil) com válvula de descarga 1.1/2" (PVC rígido soldável)
 - Nível geométrico: 0.26 m
 - Processo de cálculo: Universal

Tomada d'água:

- Tomadas d'água- saídas curtas 2" (PVC rígido soldável)
- Nível geométrico: 8,20 m
- Pressão inicial: 0.00 m.c.a.

Trecho	Vazão (l/s)	Ø (mm)	Veloc. (m/s)	Comprimento (m) J (m/n		Perda (m.c.a)	Altura (m)	Desnível (m)	Pressões (m.c.a.)			
	(1/3)	(11111)	(111/5)	Tubo	Equiv.	Total	(111/111)	(III.C.a)	(111)	(111)	Disp.	Jusante
1-2	4.90	66.60	1.41	2.70	3.30	6.00	0.0272	0.16	8.20	2.70	2.70	2.54
2-3	4.90	66.60	1.41	5.50	0.92	6.42	0.0272	0.17	5.50	5.50	8.04	7.86
3-4	4.90	66.60	1.41	0.65	3.70	4.35	0.0272	0.12	0.00	0.00	7.86	7.74
4-5	4.90	66.60	1.41	0.40	3.70	4.10	0.0272	0.11	0.00	0.40	8.14	8.03
5-6	4.90	66.60	1.41	3.04	3.70	6.74	0.0272	0.18	-0.40	0.00	8.03	7.85
6-7	4.90	66.60	1.41	2.33	3.70	6.03	0.0272	0.16	-0.40	0.00	7.85	7.68
7-8	4.90	66.60	1.41	0.79	3.70	4.49	0.0272	0.12	-0.40	0.00	7.68	7.56
8-9	4.90	66.60	1.41	3.25	3.70	6.95	0.0272	0.19	-0.40	-3.25	4.31	4.12
9-10	4.90	66.60	1.41	0.74	0.04	0.79	0.0272	0.02	2.85	0.00	4.12	4.10
10-11	4.58	66.60	1.31	10.65	2.30	12.95	0.0242	0.46	2.85	0.00	4.10	3.64
11-12	4.24	53.40	1.89	5.86	2.30	8.16	0.0776	0.63	2.85	0.00	3.64	3.00
12-13	4.23	53.40	1.89	2.23	2.30	4.53	0.0772	0.35	2.85	0.00	3.00	2.65
13-14	3.02	53.40	1.35	10.07	2.30	12.37	0.0331	0.41	2.85	0.00	2.65	2.24
14-15	2.96	44.00	1.95	1.20	7.60	8.80	0.1043	0.37	2.85	0.00	2.24	1.88

LORRANE JATOBÁ

Trecho	Vazão (l/s)	Ø	Veloc. (m/s)	Con	nprimento	(m)	J (m/m)	Perda (m.c.a)		ltura Desnível (m)	Pressões (m.c.a.)	
	(1/8)	(mm)	(111/8)	Tubo	Equiv.	Total	(m/m)		(111)		Disp.	Jusante
15-16	2.94	44.00	1.93	0.51	7.30	7.81	0.1030	0.80	2.85	0.00	1.88	1.07
16-17	2.94	44.00	1.93	0.65	3.20	3.85	0.1030	0.40	2.85	0.65	1.72	1.33
17-18	2.94	44.00	1.93	1.10	0.70	1.80	0.1030	0.19	2.20	1.10	2.43	2.24
18-19	2.40	44.00	1.58	0.34	7.30	7.64	0.0699	0.53	1.10	0.00	2.24	1.71
19-20	1.70	44.00	1.12	0.30	7.30	7.60	0.0300	0.23	1.10	0.30	2.01	1.78
20-21	1.70	44.00	1.12	0.54	0.10	0.64	0.0300	0.02	0.80	0.54	2.32	2.30
21-22	1.70	44.00	1.12	0.00	0.00	0.00	0.0300	0.00	0.26	0.00	2.30	2.30

Pressões (m.c.a.)							
Estática inicial	Perda de carga	Dinâmica disponível	Mínima necessária				
7.94	5.64	2.30	1.50				

Situação: Pressão suficiente

4.2.2. Detalhe AF- 25

Conexão analisada:

• Vaso Sanitário com válvula de descarga – 1.1/2" (PVC rígido soldável)

• Nível geométrico: 0.30 m

• Processo de cálculo: Universal

Tomada d'água:

• Tomadas d'água- saídas curtas – 3" (PVC rígido soldável)

• Nível geométrico: 8,20 m

• Pressão inicial: 0.00 m.c.a.

Trecho	Vazão	Ø	Veloc.	Con	nprimento	(m)	J	Perda	Altura	Desnível	Pressõe	es (m.c.a.)
	(l/s)	(mm)	(m/s)	Tubo	Equiv.	Total	(m/m)	(m.c.a)	(m)	(m)	Disp.	Jusante
1-2	5.47	75.60	1.22	2.70	3.70	6.40	0.0181	0.12	8.20	2.70	2.70	2.58
2-3	5.47	75.60	1.22	5.50	0.90	6.40	0.0181	0.12	5.50	5.50	8.08	7.97
3-4	5.47	75.60	1.22	0.65	3.90	4.55	0.0181	0.08	0.00	0.00	7.97	7.89
4-5	5.47	75.60	1.22	0.40	3.90	4.30	0.0181	0.08	0.00	0.40	8.29	8.21
5-6	5.47	75.60	1.22	2.12	3.90	6.02	0.0181	0.11	-0.40	0.00	8.21	8.10
6-7	5.47	66.60	1.57	18.16	0.05	18.21	0.0333	0.61	-0.40	0.00	8.10	7.49
7-8	5.47	66.60	1.57	3.17	3.70	6.87	0.0333	0.23	-0.40	0.00	7.49	7.26
8-9	5.47	66.60	1.57	3.25	3.70	6.95	0.0333	0.23	-0.40	-3.25	4.01	3.78
9-10	5.43	66.60	1.56	5.52	7.80	13.32	0.0328	0.44	2.85	0.00	3.78	3.35
10-11	5.16	66.60	1.48	1.66	2.40	4.06	0.0299	0.12	2.85	0.00	3.35	3.23
11-12	5.13	66.60	1.47	1.32	7.80	9.12	0.0296	0.27	2.85	0.00	3.23	2.96
12-13	4.83	66.60	1.39	11.34	2.40	13.74	0.0266	0.37	2.85	0.00	2.96	2.59
13-14	4.83	66.60	1.39	1.47	3.70	5.17	0.0266	0.14	2.85	0.00	2.59	2.45
14-15	4.83	66.60	1.39	0.92	3.70	4.62	0.0266	0.12	2.85	0.00	2.45	2.33
15-16	4.82	66.60	1.38	1.25	2.40	3.65	0.0265	0.10	2.85	0.00	2.33	2.23
16-17	4.51	53.40	2.01	0.91	7.80	8.71	0.0874	0.26	2.85	0.00	2.23	1.97
17-18	4.51	53.40	2.01	2.69	2.30	4.99	0.0873	0.44	2.85	0.00	1.97	1.53
18-19	4.51	53.40	2.01	1.48	3.40	4.88	0.0873	0.43	2.85	0.00	1.53	1.11
19-20	3.42	53.40	1.53	0.49	2.30	2.79	0.0413	0.12	2.85	0.00	1.11	0.99

Trecho	Vazão	Ø	Veloc.	Con	nprimento	(m)	J	Perda (m.c.a)		Desnível	Pressõe	Pressões (m.c.a.)	
	(l/s)	(mm)	(m/s)	Tubo	Equiv.	Total	(m/m)		(m)	(m)	Disp.	Jusante	
20-21	2.94	44.00	1.93	0.77	7.60	8.37	0.1030	0.32	2.85	0.00	0.99	0.67	
21-22	2.94	44.00	1.93	0.65	3.20	3.85	0.1030	0.40	2.85	0.65	1.32	0.93	
22-23	2.94	44.00	1.93	0.80	0.70	1.50	0.1030	0.15	2.20	0.80	1.73	1.57	
23-24	2.94	44.00	1.93	0.27	3.20	3.47	0.1030	0.36	1.40	0.00	1.57	1.21	
24-25	2.40	44.00	1.58	0.98	2.20	3.18	0.0699	0.22	1.40	0.00	1.21	0.99	
25-26	1.70	44.00	1.12	0.30	7.30	7.60	0.0300	0.23	1.40	0.30	1.29	1.06	
26-27	1.70	44.00	1.12	0.80	0.10	0.90	0.0300	0.03	1.10	0.80	1.86	1.84	
27-28	1.70	44.00	1.12	0.00	0.00	0.00	0.0300	0.00	0.30	0.00	1.84	1.84	

Pressões (m.c.a.)							
Estática inicial			Mínima necessária				
7.90	6.06	1.84	1.50				

Situação: Pressão suficiente

4.3. SISTEMA DE DRENAGEM PLUVIAL – DIMENSIONAMENTO DO PROJETO

Condutores Verticais

Diâmetro (mm)	Vazão (l/s)	Área do telhado (m²) Chuva 150 mm/h
50	0,57	14
75	1,76	42
100	3,78	90
125	7,00	167
150	11,53	275
200	25,18	600

4.4. Capacidade da Calha Adotada

Parâmetros de cálculo adotado:

Calha em chapa metálica com desenvolvimento de 50 cm;

• Largura: 0,25 m;

• Altura: 0,12 m;

■ Inclinação: 1,00% - 0,01 m/m

Altura da Lâmina d'água: 0,07 m

Para estas dimensões utiliza-se a fórmula de Manning-Strickler para verificação da vazão de projeto que a calha oferece.

$$Q = K \frac{S}{n} R_H^{2/3} i^{1/2}$$

Equação 02 – Equação de Manning-Strickler FONTE: ADAPTADO DE NBR 10844/89

Vazão de Projeto da Calha Adotada: 866,35 l/min.

Verifica-se que a calha adotada supre com folga a necessidade de drenagem que as áreas de contribuição demandam.

OBS: O valor referente à intensidade pluviométrica foi retirado do Manual de Chuvas Intensas no Estado de Mato Grosso elaborado pelo EMBRAPA.

3.3. SISTEMA DE TRATAMENTO/DISPOSIÇÃO DE ESGOTO – DIMENSIONAMENTO DO PROJETO

O dimensionamento do sistema de tratamento/disposição final de esgoto foi elaborado utilizando os mesmos valores de per capita utilizados no dimensionamento do reservatório.

- Alunos 501/ dia x Pessoa Público de 116 Pessoas x Dia;
- Funcionários 50l/dia x Funcionário 15 Funcionários x Dia;

3.3.1. Tanque Séptico

Cálculo do volume produzido

Utilizou-se da seguinte equação:

$$V = 1000 + N (C \times T + K \times Lf)$$

Onde:

- V = Volume útil
- N = Número de contribuintes
- C = Contribuição de despejos (1 / pessoa x dia)
- T = Período de detenção, em dias
- K = Taxa de Acumulação de Lodo (por intervalo de limpeza e temperatura)
- Lf = Contribuição de lodos frescos (L / pessoa x dia)

$$V = 1000 + 131 (50 \times 0.67 + 65 \times 0.20) - 7091.50 I$$

Onde:

- Alunos 50 l/dia x Pessoa Público de 116 Pessoas x Dia;
- Funcionários 50l/dia x Funcionário 15 Funcionários x Dia;
- T = 0.67 dia;
- K = 65;
- Lf = 0.201 / pessoa x dia;
- $V = 7.10 \text{ m}^3$.

Adotando assim as seguintes dimensões:

Volume útil calculado (m³)	Volume útil efetivo (m³)	Formato do tanque	Diâmetro (m)	Profundidade útil (m)	Número de câmaras
7.10	11.00	Cilíndrico	2.50	2.50	Câmara única

Obs.: Adotando intervalo de limpeza de 1 (um) ano.

3.3.2. Filtro Anaeróbio

Cálculo do volume produzido

Utilizou-se da seguinte equação:

$$V = 1,60 \times N \times C \times T$$

Onde:

- V= Volume útil do leito filtrante em litros;
- N= Número de contribuintes;
- C= Contribuição de despejos, em litros x pessoa/dia
- T= Tempo de detenção hidráulica, em dias;

$$V = 1,60 \times (131 \times 50) \times 0,67 - 7021,60$$

Onde:

- Alunos 50 l/dia x Pessoa Público de 116 Pessoas x Dia;
- Funcionários 501/dia x Funcionário 15 Funcionários x Dia;
- T = 0.67 dia;
- $V = 7,10 \text{ m}^3$.

Para o volume calculado adotam-se seguintes dimensões:

Volume útil calculado (m³)	Volume útil efetivo (m³)	Formato do tanque	Diâmetro (m)	Altura útil (m)	Número de câmaras
7.10	8.48	Cilíndrico	3.00	1,20	Câmara única

Considerações

- A altura do fundo falso deve ser limitada a 0,60m, já incluindo a espessura da laje;
- O fundo falso deve ter aberturas de 2,5cm, a cada 15 cm. O somatório da área dos furos deve corresponder a 5% da área do fundo falso;
- A saída do efluente no filtro é feita através da utilização de uma canaleta
 (Tubo PVC branco) como apresentado no projeto.

3.3.3. Sumidouro

Cálculo da área de infiltração

Utilizou-se a seguinte equação:

$$A = V / C_i$$

Onde:

- A = Área de infiltração necessária em m²
- V = Volume de contribuição diária em 1/dia
- C_i = Coeficiente de infiltração $(1/m^2 x dia) 65 1/m^2 x dia$
- π = constante 3,14

$$A = V / C_i$$

$$A = 6550 / 65$$

$$A = 100,77 \text{ m}^2$$

Definição da Altura

Utiliza-se a seguinte equação:

 $\mathbf{H} = \mathbf{A}/(\mathbf{N}\mathbf{u}) - \mathbf{A}\mathbf{2}$

 $\pi \times D$

Onde:

- A = Área de infiltração necessária em m²;
- A2 = Área da secção cilíndrica do sumidouro m²;
- Nu = Número de unidades;
- D = Diâmetro adotado (m);
- H = Altura a ser adotada (m).

Tendo assim:

 $H = \underline{[100,77/4] - 7.09}$ $\pi \times 3.00$

H = 1.92 m

Dimensões do sumidouro

- Diâmetro D = 3.00 m;
- Altura Útil H = 2.00 m;
- Altura do fundo de brita = 0,50m;
- Número de Unidades = 4 unidades.

4. ESPECIFICAÇÕES

4.1. Água fria

ESPECIFICAÇÃO	
Tubulação	Os tubos deverão ser em PVC rígido marrom, com juntas soldáveis, pressão de serviço 7,5 Kgf/cm2, fabricados e dimensionados conforme a norma NBR-5648/99 da ABNT. O fornecimento deverá ser em barra de tubos com comprimento útil de 3,00 ou 6,00m.
Conexões	As conexões deverão ser em PVC rígido marrom, com juntas soldáveis, pressão de serviço 7,5 Kgf/cm2, fabricados e dimensionados conforme a norma NBR-5648/77 da ABNT.
	As buchas das conexões das peças de utilização deverão ser em latão.
Registros de Gaveta e Pressão	Os registros de gaveta deverão ser em bronze, dotados de canoplas cromadas ou acabamento bruto, conforme projeto.

4.2. Coleta e disposição de esgoto sanitário

ESPECIFICAÇÃO	
Tubulação	Deverá ser em PVC rígido, para instalações prediais de esgoto, tipo ponta bolsa com virola para juntas elásticas. A fabricação deverá atender a norma NBR-5688/99 da ABNT
Conexões	Deverão obedecer as mesmas especificações dos tubos.
Caixa de inspeção	Deverão ser construídas no local, com fundo de concreto magro e alvenaria de blocos, impermeabilizada internamente. Tampa removível de concreto armado apresentando vedação perfeita e dimensões conforme necessidade do projeto.

4.3. Drenagem de águas pluviais

ESPECIFICAÇÃO	
Tubulação	Os tubos e conexões deverão ser em PVC rígido, com ponta e bolsa e virola para juntas elásticas, conforme NBR-5688/99 da ABNT.
Conexões	Deverão obedecer as mesmas especificações dos tubos.
Grelhas	Deverão ser metálicas, conforme dimensões de projeto

5. EXECUÇÃO DOS SERVIÇOS

Os serviços deverão ser executados de acordo com os desenhos do projeto, relação de materiais e as indicações e especificações do presente memorial.

O executor deverá, se necessário, manter contato com as repartições competentes, a fim de obter as necessárias aprovações dos serviços a serem executados, bem como fazer os pedidos de ligações e inspeções.

Os serviços deverão ser executados de acordo com o andamento da obra, devendo ser observadas as seguintes disposições:

- Os serviços deverão ser executados por operários especializados;
- Deverão ser empregadas nos serviços somente ferramentas apropriadas a cada tipo de trabalho;
- Quando conveniente, as tubulações embutidas deverão ser montadas antes do assentamento de alvenaria;

- As tubulações verticais, quando não embutidas, deverão ser fixadas por braçadeiras galvanizadas, com espaçamento tal que garanta uma boa fixação;
- As interligações entre materiais diferentes deverão ser feitas usando-se somente peças especiais para este fim;
- Não serão aceitas curvas forçadas nas tubulações sendo que nas mudanças de direções serão usadas somente peças apropriadas do mesmo material, de forma a se conseguir ângulos perfeitos;
- Durante a construção, as extremidades livres das canalizações serão vedadas evitando-se futuras obstruções;
- Para facilitar em qualquer tempo as desmontagens das tubulações, deverão ser colocadas, onde necessário, uniões ou flanges;
- Não será permitido amassar ou cortar canoplas. Caso seja necessária uma ajustagem, a mesma deverá ser feita com peças apropriadas;
- A colocação dos aparelhos sanitários deverá ser feita com o máximo de esmero, garantindo uma vedação perfeita nas ligações de água e nas de esgoto. O acabamento deve ser de primeira qualidade.

NOTAS E OBSERVAÇÕES

- Todas as informações necessárias para sanar possíveis dúvidas estão descritas neste memorial e nas pranchas dos projetos;
- Caso haja dúvidas na execução das instalações e as mesmas não forem sanas após a leitura deste memorial, o proprietário poderá entrar em contato com o autor dos projetos;
- Quaisquer alterações nos projetos deverão ter a autorização do autor dos mesmos.

Sorriso – MT, 21 de fevereiro de 2022.

Lorrane Jatobá de Almeida Arquiteta e Urbanista CAU A186893-4